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number of these irreducible summands entirely depends
whether A = por A # .

The irreducible HE-module DM* belong to a block entirely
determined by a := a(\, ). We define 0 - o := a1, A).

irreducible summands in the restrictions D’\’“l

o lf \=ptheno -a=a.
o If 0 - a = «, does there necessarily exist v such that
a=a(v,v)?
The theory of cellular algebras gives a general framework to

construct Specht modules. The algebra P is cellular, and the
above problem appears when studying the cellularity of HD.



© A theorem in combinatorics



Bipartitions

Definition

A partition is a finite non-increasing sequence of positive integers.

We can picture a partition with its Young diagram.

The sequence (4,2,2,1) is a partition and its Young diagram
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Definition

A bipartition is a pair of partitions.

—

The pair ((5, 1), (2)) is a bipartition, constructed with the
partitions (5,1) and (2).




Multiset of residues

Let 1 be a positive integer and set e := 27.

The multiset of residues of the bipartition (A, u) is the part of
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corresponding to the Young diagram of (A, ).

Example

The multiset of residues of the bipartition ((5, 1), (2)) is given for
e=4by |0 1]2]3]0] [2]3].




Residues multiplicity and shift

Let e = 2y € 2N*. If (), u1) is a bipartition, write a(\, ) € N€ for
the e-tuple of multiplicities of the multiset of residues.
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Definition (Shift)

For a = (o) € N, we define 0 - a € N° by (0 - a)i == ay4i.

We have 0 - oo = (o), g1, -+, Qe—1, 0, Q1,4 -« o, Qly—1).



Stutterness

Proposition

We have a(u, \) = o - a(\, p). In particular, if a == (X, \) then
o-a=a.
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Stutterness
We have a(u, \) = o - a(\, ). In particular, if a .= a(\, \) then
o-a=a.

Theorem (R.)

Let (\, ) be a bipartition and let o = a(A\,pu) € N®. Ifo-a =«
then there exists a partition v such that a = a(v,v).

| A\

Example
Take e = 6. The multisets
[0] [3]4]5] and 0J1]2[3] [3]4][5]0]
2 3 ) 5] 2] )
12
9]
coincide (and a = (2,1,2,2,1,2)).




Proof by example

We have oa(H, j‘ ) =(2,1,2,2,1,2).
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Proof by example

2,1,2,2,1,2

Y ) ) ) )

We have a(H, jH):(
0]1]2] 3[4]5]
5[0 2[3
4[5 1[2
3 0

i}
0[1]2] 3[4]5]
5[0 2[3
415 12
4
0]1]2] 3[4]5]
5[0 2[3
4 1
i
0]1]2] 3[4]5]
5[0 2[3

).

a=(323,32,3)

a:(2?2? 7272? )

!

a=(2,2,227202)

Y ) ) ) )

!
a=(2,1,2,21,2)



Failure of the proof by example

We have a(H, ) =1(2,1,2,2,1,2).
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Failure of the proof by example

We have a(H, ) =1(2,1,2,2,1,2).

0]1]2] 3[4]5]
5[0 2[3
1[5 12 a=(32,3,32,3)
3 0
A 1
0[1]2 3[4]B
5[0 23 a=(2,2,3,2,2,3)
4[5 12
\ 2
0[1 3[4
5/0 2|3 a=(2,2,2,2,2,2)
+E 3



© Tools for the proof



Abaci and cores

To a partition A = (A1,...,Ap), we associate an abacus with e
runners such that for each a € N*,

there are exactly A\, gaps above and on the left of the bead a. )

The 3 and 4-abaci associated with the partition (6,4,4,2,2) are




Abaci and cores

To a partition A = (A1,...,Ap), we associate an abacus with e
runners such that for each a € N*,

there are exactly A\, gaps above and on the left of the bead a. )

Example

The 3 and 4-abaci associated with the partition (6,4,4,2,2) are

Definition

If no runner of the e-abacus of a partition A has a gap between its
beads, we say that X\ is an e-core.

The partition of the above example is not a 3-core but a 4-core.



Parametrisation

To the e-abacus of an e-core )\, we associate the coordinates
x(A) € Z€ of the first gaps.

Example
For the 4-core (6,4,4,2,2) we have

where each + denote a first gap, hence x = (—1,2,1, -2).




Using the parametrisation

Proposition

Let \ be an e-core, let o ;== a(\) € N¢ be the e-tuple of
multiplicities of the multiset of residues and x = x(\) € Z¢ the
parameter of the e-abacus. We have:

X0+ o1 =0,

1
SlxI2 = o,

xi = —ajqq forall i € {0,...,e—1}.




Using the parametrisation

Proposition

Let \ be an e-core, let o ;== a(\) € N¢ be the e-tuple of
multiplicities of the multiset of residues and x = x(\) € Z¢ the
parameter of the e-abacus. We have:

X0+ o1 =0,

1
SlxI2 = o,

xi = —ajqq forall i € {0,...,e—1}.

If x = x(\) and y = x(u) then ap(\, ) = q(x,y), where

q:|Q*xQ — Q

(x,y) — slIxIP+3lyI? =y = —yp1




Let (A, 1) be an e-bicore, define x == x(A) and y = x(u) € Z°. We
assume that « := «(\, p) satisfies 0 - @ = @ and we want to prove
that there exists a partition v such that a(v,v) = a.
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It suffices to find an element z € 7€ such that:

q(z,z) < q(x,y),
zo++2ze-1 =0, (E)
Zi + Zjiyn = Xi + Yitns for all i.




Key lemma

Let (A, 1) be an e-bicore, define x == x(A) and y = x(u) € Z°. We
assume that « := «(\, p) satisfies 0 - @ = @ and we want to prove
that there exists a partition v such that a(v,v) = a.

Lemma

It suffices to find an element z € 7€ such that:

q(z,z) < q(x,y),
zo++2ze-1 =0, (E)
Zi + Zjiyn = Xi + Yitns for all i.

Thanks to the convexity of g, the element z := % satisfies (E).
However, we may have z ¢ 7€ : in general z € %Ze.
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We want to prove that we can choose a red point such that:
@ the constraints are still satisfied

@ estimate the error made
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We want to prove that we can choose a red point such that:
@ the constraints are still satisfied — binary matrices

@ estimate the error made — strong convexity
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